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Abstract. One of the most attractive problems for post-quantum se-
cure cryptographic schemes is the LWE problem. Beside combinatorial
and algebraic attacks, LWE can be solved by a lattice-based Bounded
Distance Decoding (BDD) approach. We provide the first parallel im-
plementation of an enumeration-based BDD algorithm that employs the
Lindner-Peikert and Linear Length pruning strategies. We ran our al-
gorithm on a large variety of LWE parameters, from which we derive
the following interesting results. First, our parallel enumeration achieves
almost perfect speed-up, which allows us to provide for the first time
practical cryptanalytic results on standard LWE parameters of meaning-
ful size. Second, we conclude that lattice-based attacks perform better
than recent advanced BKW-type algorithms even for small noise, while re-
quiring way less samples. Third, we experimentally show weaknesses for
a binary matrix LWE proposal of Galbraith.
Keywords. LWE security, Bounded Distance Decoding, Lattices

1 Introduction

Estimating the hardness of the Learning with Errors Problem (LWE) is of great
importance in cryptography since its introduction by Regev [20]. Nowadays, the
standard way to check concrete hardness of an LWE instance is by comparison
with tables in LWE cryptanalysis papers (see [5, 16, 17] for lattice-based attacks,
[1, 12, 15] for combinatorial attacks of BKW-type, [3] for an algebraic attack).
Also, [2] provides a publicly available LWE-estimator that collects all known
attacks and predicts their running-times on given LWE parameters. Due to the
large memory- and sample-complexity of combinatorial algorithms, the lattice-
based approach seems more practical. This belief was questioned by a recent
result on BKW of Kirchner and Fouque [15], where an LWE instance of dimension
128 was solved in 13 hours. Currently, this is the record for combinatorial attacks
on LWE. So it is reasonable to ask whether a similar result can be achieved by
lattice-based attacks.

In this paper we present results on a parallel implementation of lattice-based
attacks on LWE. We view the LWE problem as a BDD instance on a q-ary lattice.
From here there are two approaches to go for: one can solve a BDD instance
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either via Kannan’s embedding [14], or via reducing a lattice basis first and then
solving a CVP problem on a reduced basis (reduce-then-decode). While Kannan’s
embedding performs well for small dimensions [18], its complexity grows with
the dimension since the algorithm calls an SVP solver as a subroutine.

We take the reduce-then-decode approach because the decoding part contains
a tree-traversal algorithm that can be almost perfectly parallelized.

Our main contribution is a parallelization of BDD enumeration [16, 17]. From
our experiments we conclude that:

1. BDD enumeration can be almost perfectly parallelized, i.e. with n processors
the achieved speed-up is roughly n.

2. For standard LWE-settings (e.g. uniform secret) instances with dimension of
order n = 100 can be broken in several hours (see Sect. 5)

3. Lattice-based techniques are more efficient than current combinatorial algo-
rithms even for binary secret.

4. Small error rates in BDD (binary or ternary error-vectors) allow for a much
more efficient decoding.

5. A concrete instance of a space-efficient LWE variant of Galbraith [9] is weaker
than previously thought (see Sect. 4)

To the best of our knowledge, our implementation provides the first results
for lattice-based enumeration attacks on concrete LWE instances. Our attack
is carried out in combination with the BKZ algorithm implemented in the NTL
library [21]. Further improvements of lattice reduction (like in [8]) would in com-
bination with our parallel BDD implementation certainly speed-up the attacks
even further. Our code will be made available online.1

The remainder of this paper is organized as follows. Section 2 covers notations
and background. In Section 3 we describe Babai’s enumeration algorithm and
its generalization. Our main algorithm, the parallelized BDD enumeration, is
described in Section 3. Section 4 discusses variants of LWE and differences to
the standard BDD attack. Our implementation results are presented in Section 5.

2 Background

We use bold lower-case letters for vectors b and we let ‖b‖ denote their Eu-
clidean norm. For vectors (b1, . . . ,bk), we construct a basis matrix B consisting
of rows bi. For linearly independent (b1, . . . ,bk) ∈ Rm, the fundamental domain

P1/2(B) is
{∑k

i=1 cibi : ci ∈ [− 1
2 ,

1
2 )
}

. The Gram-Schmidt orthogonalization B̃ =

(b̃1, . . . , b̃k) is obtained iteratively by setting b̃1 = b1 and b̃i as the orthogo-

nal projection of bi on (b1, . . . ,bi−1)
⊥

for i = 2, . . . , k. This orthogonalization

process can be described via matrix-decomposition B = µB̃, where µ is a lower-
triangular matrix with µi,j = 〈bi, b̃j〉/‖b̃j‖2 for i ≥ j.

1 https://github.com/pfasante/cvp-enum

https://github.com/pfasante/cvp-enum
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We deal with a q-ary lattice with basis B:

Λq(B) =
{
y ∈ Zm : y =

k∑
i=1

zi · bi mod q : zi ∈ Z
}
.

Vectors from this lattice are in Im(B). The kernel of matrix B forms another lat-
tice Λ⊥q (B) = {x ∈ Zk : xB = 0 mod q}. For a lattice Λ(B), the first successive
minimum λ1(Λ(B)) is the length of its shortest vector.

In this paper we describe an algorithm to solve the so-called Bounded Dis-
tance Decoding Problem (BDD) and the most cryptographically relevant instance
of it, the Learning with Errors Problem (LWE). BDD asks to find a lattice point v
closest to a given point t ∈ Rm under the promise that ‖v−t‖ = ‖e‖ ≤ R, where
R is usually much smaller than the lattice’s packing radius. In the LWE case, we
know in addition that the error-vector e is distributed as a discrete Gaussian i.e.
its probability distribution, denoted Ds, is proportional to exp(−π‖e‖2/s2). In
LWE it suffices to consider the integer lattice Z as a support for the error distri-
bution, so we used the Ziggurat Algorithm implemented in [6] for the sampling.
A discrete Gaussian sampler over any lattice can be found in [11].

Apart from the scaled standard deviation s, the LWE problem is parametrized
by a dimension n ≥ 1, an integer modulus q = poly(n) and the number of
LWE samples m. For secret s ∈ Zn

q , an LWE sample is obtained by choosing a
vector a ∈ Zn

q uniformly at random, an error e ← Ds, and outputting m pairs
(a, t = 〈a , s〉+ e mod q) ∈ Zn

q × Zq. Typically a cryptosystem reveals m = Θ(n)
samples (commonly as a public key) and for lattice-based attack we consider
m ≤ 2n.

We write the obtained m pairs as (A, t = sA + e mod q) ∈ Zn×m × Zm for
t = (t1, . . . , tm), e = (e1, . . . , em) and the columns of matrix A are composed of
the ai. From this it is easy to see that (the search version of) the LWE problem is
an average-case hard Bounded Distance Decoding problem for the q-ary lattice
Λ(A) = {z ∈ Zm : ∃s ∈ Zn

q s.t. z = sA mod q}, i.e. t is close to a linear combi-
nation of rows of A. Assuming A is full-rank (which is the case w.h.p.), its
determinant is det(Λ(A)) = qm−n and the rows of the matrix below form its
basis over Zm

B =

(
A′ Im−n

qIm−n 0

)
∈ Zm×m, (1)

where A = (A′|Im−n) and A′ ∈ Zn×n is a row-reduced echelon form of A.
Reduce-then-decode is our approach to solve LWE in practice. For the reduc-
tion step, we β-BKZ reduce the basis defined in Eq. (1). The reduction’s running
time is determined by m and the running time of an SVP-solver on a lattice of
dimension β. Our decoding step is described in the subsequent section.

3 Enumeration Tree

Let us describe our implementation of the tree-traversal algorithm for the BDD
enumeration. Recall that a BDD instance is given by a (BKZ-reduced) basis
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B ∈ Zm×m and a target t ∈ Zm that is close to a lattice point v =
∑m

k=1 vkbk.
Our goal is to find the coordinates vk. Knowing that t − v = e is short, we
enumerate over all coefficient vectors (vm, . . . , v1) that result in a vector close to
t. A way to find the coordinates vk via iterative projections is the Nearest Plane
Algorithm of Babai [4]. In the k-th iteration (k = m, . . . , 1), the target t is pro-

jected onto Span (b1, . . . ,bk−1)
⊥

choosing the closest translate of the sub-lattice
Λ(b1, . . . ,bk−1) (line 4, Alg. 1) and the projected vector becomes a new target

(line 5). The procedure results in a closest vector v, s.t. ‖e‖ ≤ 1/2
√∑m

k=1 ‖b̃k‖2.

An iterative version of the Nearest Plane Algorithm is presented in Algorithm 1.

Algorithm 1 Babai’s NearestPlane (B, t)

Input: B = (b1, . . . ,bm) ∈ Zm×m, t ∈ Zm

Output: v ∈ L(B) close to t and e = ‖e‖ = ‖t− e‖
1: t(m) ← t, e(m) ← 0, k ← m.
2: Let B̃← GSO(B)
3: while k > 0 do
4: c(k) ←

〈
t(k) , b̃k

‖b̃k‖2
〉

. Compute the closest hyperplane U (k)

5: t(k−1) ← t(k) − dc(k)cbk . Project onto U (k) = c(k)b̃k + Span(b1, . . . ,bk−1)

6: e(k−1) ← e(k) + (c(k) − dc(k)c)2‖b̃k‖2 . Compute the squared error-length
7: k ← k − 1

8: return (t− t(0), e0)

While the above Nearest Plane procedure is very efficient even for large m,
the output t(0) is the correct one only if e ∈ P1/2(B). As a given basis B may
be ‘far away’ from being orthogonal, the choice of the closest hyperplane (line 4,
Alg. 1) may not lead to the actual closest vector. On each iteration, the additive

factor to the squared error-length can be as large as 1
2‖b̃‖

2.

To mitigate the non-orthogonality of the input basis, Lindner and Peikert [16]
proposed to project on several close hyperplanes, i.e. in Step 5 of Algorithm 1,

c
(k)
i , 1 ≤ i ≤ dk are chosen, resulting in dk new targets t

(k−1)
i . To guarantee

a constant success probability, dk must be chosen such that dk · ‖b̃k‖ > 2ek,
i.e. the error-vector e must be contained in the stretched fundamental paral-
lelepiped P1/2(B · diag(d1, . . . dm)). For the LWE-case the sequence (di)i=1,...,m

can be computed given (‖b̃i‖)i=1,...,m and the parameter s.

Our algorithm is implemented as a depth-first tree traversal where each level-
k node (k = m, . . . , 1), represents a partial assignment (c(m), . . . , c(k)) of the tar-
get t(k) = t−

∑m
i=k c

(i)bi. A children-set for this node is generated by projecting

t(k) onto dk−1 closest hyperplanes U
(k−1)
i = c

(k−1)
i b̃k−1 + Span(b1, . . . ,bm−k),

i = 1, . . . , dk−1. Each leaf is a candidate-solution v =
∑m

i=1 c
(i)bi, whose cor-

responding error is checked against the currently shortest. Figure 1a represents
the case m = 3, d1 = 3, d2 = 2, d1 = 1.

Note that the length of an error-vector is not explicitly bounded by the
Lindner-Peikert enumeration tree. Instead, one imposes a restriction on its in-
dividual coordinates ei. In Liu and Nguyen’s Length Pruning Algorithm [17],



LWE Decoding

1

2

3 4

5

6

(a) Order of tree-traversal of Algo-
rithm 2. The left-most children are vis-
ited first.
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(b) Order of tree-traversal of the imple-
mented best-first search.

Fig. 1: Orders of tree-traversal

the number of children for a node is determined only by the length of the error
accumulated so far and hence, as opposed to the Lindner-Peikert strategy, might
differ for two nodes on the same level. For Gaussian error, one would expect that
on level k the value e(k−1) (line 6, Alg. 1) satisfies e(k−1) < Rk ≈ s2(m− k + 1)
resulting in e(0) = ‖e‖ = s2m. This strategy is called Linear Pruning and is used
in our experiments. We do not consider the so-called Extreme Pruning strategy
where the bounds satisfy Rk � s2(m−k+1) (i.e. the success probability is very
low, but boosted via re-randomizing the basis and repeating). While Extreme
Pruning proved to be more efficient in the SVP setting [10], in the BDD case
re-randomizing an instance causes re-running the expensive BKZ reduction (as
the re-randomization distorts the reducedness).

Both enumeration strategies, Lindner-Peikert and Length Pruning, can be
generalized by considering a family of bounding functions B(k) : Q → Q, 1 ≤
k ≤ m that take a squared error-length as input and output the remaining
allowed length depending on the chosen strategy. From the value B(k)(e(k)),
one can compute the number of children for a node on level k (line 6, Alg. 2).
The Lindner-Peikert bounding function ignores the error-length setting B(k) =

(dk‖b̃k‖)
2

by having dk children for all k-level nodes. For the Length Pruning
of [17], we set B(k) = Rk−e(k). Our BDD Enumeration in Algorithm 2 describes
the depth-first tree-traversal under this generalization.

Algorithm 2 constructs an enumeration tree with a k-level node storing a
target-vector t(k−1), a coefficient vector c(k) of a candidate-solution

∑m
k=1 c

(k)bk

and an accumulated error-length e(k−1) (lines 10–12). A path from a root (k =
m) to a leaf (k = 1) gives one candidate-solution v =

∑m
k=1 c

(k)bk with error-
length e(0) = t− v. The path with the minimal error-value is the output of the
algorithm.

Notice that different paths have different success probabilities: the path cor-
responding to Babai’s solution

∑m
k=1 c

(k)bk is the most promising one. So instead
of choosing the left-most child and traversing its sub-tree, the implemented tree-
traversal algorithm chooses Babai’s path first, i.e. a ‘middle’ child of a node, and
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Algorithm 2 BDD Enumeration (B, t, B(k))

Input: B = (b1, . . . ,bm) ∈ Zm×m, t ∈ Zm, a family of bounding functions B(k) : Q→
Q
Output: v ∈ L(B) close to t and e = ‖e‖ = ‖t− e‖
1: t(m) ← t, e(m) ← 0, k ← m.
2: Let B̃← GSO(B)
3: (t(0),minLen)← NearestPlane(B, t)
4: while (true) do
5: if (k > 0) then

6: Int←
√
B(k)(e(k))/‖b̃k‖ . Number of children

7: c∗ ← 〈t(k), b̃k〉/‖b̃k‖2
8: cmin ← dc∗ − 1

2
Inte . Left-most child

9: cmax ← bc∗ + 1
2
Intc . Right-most child

10: c(k) ← cmin

11: t(k−1) ← t(k) − c(k)bk . Project onto U (k) = c(k)b̃k + Span(b1, . . . ,bk−1)

12: e(k−1) ← e(k) + (c(k) − c∗)2‖b̃k‖2 . Compute the squared error-length
13: k ← k − 1 . Go down the tree
14: else . On a leaf
15: if (e(k) < minLen) then
16: v←

∑k
i=1 c

(i)bi . Current best solution

17: minLen = e(k)

18: repeat . Traverse up
19: if (k = 0 AND c(k) > cmax) then . On the root, no right siblings
20: return (v,minLen)

21: k ← k + 1
22: until (c(k) ≥ cmax)
23: c(k) ← c(k) + 1 . Traverse to the right sibling
24: t(k−1) ← t(k) − dc(k)cbk

25: e(k−1) ← e(k) + (c(k) − dc(k)c)2‖b̃k‖2

26: return (t(0), e(0))

then examines all nearby paths. This strategy of ordering the paths by decreasing
success probability is called Length best first search (see Fig. 1b).

3.1 Parallel implementation

In Algorithm 2, sub-tree traversals for two different nodes on the same level
are independent, so we can parallelize the BDD Enumeration. Let #NThreads
be the number of threads (processors) available. Our goal is to determine the
upper-most level k having at least as many nodes #N(k) as #NThreads. Then
we can traverse the #N(k) sub-trees in parallel by calling Algorithm 2 on each
thread.

We start traversing the enumeration tree in a breadth-first manner using
a queue. In a breadth-first traversal, once all the nodes of level k are visited,
the queue contains all their children (i.e. all the nodes of level k+ 1), thus their
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number #N(k+1) can be computed. Once a level k with #N(k) ≥ c·#NThreads
for some small constant c ≥ 1 is found, we stop the breadth-first traversal and
start Algorithm 2 for each of the #N(k) sub-trees in an own thread. The benefit
of having c > 1 is that whenever one of the threads finishes quickly, it can be
assigned to traverse another sub-tree. This strategy compensates for imbalanced
sizes of sub-trees.

This breadth-first traversal is described in Algorithm 3. At the root we have
#N(m) = 1. The associated data to each node are the target t(m−1), the
error-length e(m−1) and the partial solution s(m−1). We store them in queues
Qt, Qe, Qs. Traversing the tree down is realized via dequeuing the first element
from a queue (line 9) and enqueuing its children into the queue. When Algo-
rithm 3 terminates, we spawn a thread that receives as input a target t(k) from
Qt, an accumulated so far error-length e(k) ∈ Qe, a partial solution s(k−1) ∈ Qs,
GSO-lengths (‖b̃k−1‖, . . . , ‖b̃1‖) and bounding functions B(i), 1 ≤ i ≤ k − 1.
Since the number of possible threads is usually a small constant, there is no
blow-up in memory usage in the breadth-first traversal.

Note that for a family of bounding functions B(k) that allows to compute
the number of children per node without actually traversing the tree, e.g. the
Lindner-Peikert bounding strategy, it is easy to find the level where we start
parallelization. In case of Lindner-Peikert, #N(k) =

∏m−k
i=m di and hence, we

simply compute the largest level k where #N(k) ≥ c ·#NThreads.

Algorithm 3 Traverse Breadth-First (B, t, B(k))

Input: B = (b1, . . . ,bm) ∈ Zm×m, t ∈ Zm, a family of bounding functions B(k),
#NThreads ∈ Z, c ∈ Z
Output: An array (t(k))i of size #N(k), where #N(k) ≥ c ·#NThreads, an array of

associated error-length (e(k))i, an array of associated partial solutions (s(k))i, 1 ≤ i ≤
#N(k).

1: Initialize queues Qt, Qe, Qs

2: Qt.Enqueue(t), Qe.Enqueue(0), Qs.Enqueue(0)

3: Let B̃← GSO(B)
4: #N(m)← 1
5: k ← m− 1
6: while (#N(k + 1) < c ·#NThreads) do
7: #N(k)← 0
8: for j = 1 . . .#N(k + 1) do
9: t← Qt.Dequeue(), e← Qe.Dequeue(), s← Qs.Dequeue()

10: #N(k)← #N(k) + d
√
B(m)(e)/‖b̃m‖e

11: c∗ ← 〈t, b̃m〉/‖b̃m‖2

12: for i = 0 . . . d
√
B(m)(e)/‖b̃m‖e − 1 do

13: Qt.Enqueue(t− dc∗ ± icbk)

14: Qe.Enqueue(e+ (c∗ − dc∗ ± ic)2‖b̃k‖2)
15: Qs.Enqueue(s + dc∗ ± icbk)

16: k ← k − 1

17: return (Qt, Qe, Qs)
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4 Variants of LWE

Binary secret LWE. Recent results on the BKW algorithm for LWE [12, 15]
show that BKW’s running time can be significantly sped up for small LWE se-
cret vectors s. For a binary secret, the complexity drops from fully exponential
to 2O(n/ log logn), and Kirchner and Fouque [15] report on a successful secret-
recovery for n = 128 within 13 hours using 228 LWE samples.

Lattice-based techniques in turn can also profit from the fact that the secret
is small (smaller than the error). As described by Bai and Galbraith [5], one
transforms a BDD instance (Λ(A),b = sA+e) with error e into a BDD instance(

Λ⊥q

(
Im
A

)
, (b,0n)

)
(2)

with error (e, s). The instance is correctly defined since

((e, s)− (b,0n))

(
Im
A

)
= 0 mod q.

The lattice Λ⊥q

(
Im
A

)
∈ Zn+m is generated by the rows of A⊥, where

A⊥ =

(
−A|In
qIn+m

)
.

We run the BDD Enumeration of Algorithm 2 on instances defined by Eq. (2)
(see Sect. 5, Tab. 1).
Binary matrix. To implement an LWE-based encryption on lightweight devices,
Galbraith [9] proposed not to store the whole random matrix A ∈ Zn×m

q , but to

generate the entries of a binary A ∈ Zn×m
2 via some PRNG. Galbraith’s cipher-

texts are of the form (C1, C2) = (Au, 〈u,b〉 + mdq/2e mod q) for a message
m ∈ {0, 1}, some random u ∈ {0, 1}m and a modulus q ∈ Z. The task is to
recover u given (A,Au).

Let us describe a simple lattice-attack on the instance (A,Au). Notice that
C1 = Au holds over Z and, hence, over Zq for large enough modulus q since we
expect to have Au ≈ m/4. First, we find any solution w for Aw = C1 mod q.
Note that

(w− u) ∈ ker(A).

So we have a BDD instance (Λ⊥q (A),w), with u as the error-vector of length

m/2 and a lattice with det(Λ⊥q (A)) = qn. Since we can freely choose q to be as

large as we want, we can guarantee that λ1(Λ⊥q (A)) � m/2. Such an instance
can be solved by first running β-BKZ for some small constant β and then Babai’s
CVP algorithm.

As a challenge, Galbraith proposes a parameter-set (n = 256,m = 400) and
estimates that computing u from Au should take around one day. We solve this
instance using NTL’s BKZ implementation with β = 4 and q = 500009 in 4.5
hours (see Tab. 1).
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5 Implementation results

We implemented our BDD enumeration step with Lindner-Peikert’s Nearest
Planes and Liu-Nguyen’s Linear Length Pruning. All programs are written in
C++ and we used C++11 STL for implementing the threading. Our tests were
performed on the Ruhr-University’s “Crypto Crunching Cluster” (C3) which
consists of one master node to schedule jobs and four computing nodes. Each
computing node has four AMD Bulldozer Opteron 6276 CPUs, and thus 64 cores,
running at 2.3 GHz and 256 GByte of RAM. The results of our experiments are
presented in Table 1.

Our experiments are run on

1. standard LWE parameters (top part of Tab. 1),
2. LWE with binary- and ternary-error (middle part),
3. binary secret LWE,
4. the space-efficient proposal of Galbraith (bottom).

Let us describe the results of our experiments in more details.

1. For the standard LWE case and Gaussian error, the dimensions we success-
fully attacked in several hours are within the interval n ∈ [70, 100]. We
achieve an almost perfect speed-up – the gained factor in the running times
is roughly equal to the number of processors (#NThreads). This shows that
our distribution of processors balances the workload. The largest success-
fully decoded parameters are (n = 100, s = 4). For comparison, the instance
(n = 192, s = 9) achieves 287-security level as estimated in [16].

2. Not surprisingly, once the error is changed from Gaussian to binary or
ternary, the decoding attack performs better, but balancing the BKZ-reduction
and BDD steps becomes more subtle, since a smaller error is more favourable
for the decoding. Hence, such an instance can be attacked with a less reduced
basis than a similar LWE instance with Gaussian noise. To balance the re-
duction and enumeration steps, we first choose a smaller block-size β for
the reduction and, second, choose fewer than 2n samples. Our choice for m
additionally lowers the running time of BKZ-reduction, while it still guaran-
tees successful decoding. The maximal dimension achieved in this regime is
n = 130. Binary and ternary errors are especially interesting for cryptanal-
ysis of NTRU [13] and for special variants of LWE considered by Buchmann
et al. [7] and Micciancio and Peikert [19].

3. For binary secret we are able to attack dimensions n ∈ [100, 140]. In contrast
to the BKW attack of Kirchner and Fouque [15], we choose as few samples as
possible to aid the reduction step (while keeping a unique solution). More
concretely, for n = 130, we used only m = 150 samples, as opposed to
m = 228 samples required in the BKW attack. Our attack takes only 7.6h,
which is faster than the reported 13h in [15]. Moreover, we are able to attack
dimension n = 140 for which we benefit again from parallelization.

4. For the space-efficient binary-matrix case of [9], we choose q = 50009 and
solve the instance (n = 256,m = 400) in 4.5h with β = 4 and Babai’s CVP
algorithm.
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Table 1: Running-times of the BDD-decoding attack on LWE . The superscript
B indicates that Babai’s Nearest Plane Algorithm already solved the instance.
Uniform binary and ternary error distributions are denoted by s = {0, 1} and
s = {−1, 0, 1}.

LWE-parameters BKZ-reduction Lindner-Peikert Length Pruning
n q s m β T #NThreads T #NThreads T

70 4093 6 140 15 41min — — 1 14h
70 4093 6 140 15 41min 10 9.6h 10 1.5h

70 4093 6 140 20 65min — — 1 44min
70 4093 6 140 20 65min — — 10 5min

80 4093 5 150 25 4.3h 1 55h 1 13h
80 4093 5 150 25 4.3h 10 45h 10 1.5h
80 4093 5 150 25 4.3h 20 12h 20 50min

90 4093 4 170 22 11.3h — — 1 35.5h
90 4093 4 170 22 11.3h 20 49.5h 10 3.6h

100 4093 4 200 20 6.9h 24 3.0h 24 2.7h

Binary error [7, 19]
100 4093 {0, 1} 140 4 1h — — 1 2.5min
110 4093 {0, 1} 160 5 1.4h 1 5.7h 1 3.1h
120 4093 {0, 1} 170 10 1.6h — — 1 27min
130 4093 {0, 1} 190 18 4.5h — — 1 13.5h
130 4093 {0, 1} 190 18 4.5h — — 10 1.7h
130 4093 {0, 1} 200 10 3.1h — — 1 1h
130 4093 {0, 1} 260 20 30.3h 16 1.8min 16 75s

Ternary error [13]
100 4093 {−1, 0, 1} 140 10 50min 1 5.6h 1 9min
100 4093 {−1, 0, 1} 200 7 2.2h 1 17s 1 17s
110 4093 {−1, 0, 1} 180 7 1.5h 1 10min 1 10min
120 4093 {−1, 0, 1} 240 7 4.5h 20 13h 20 14min
128 4093 {−1, 0, 1} 256 20 28.8h 30 92s 30 43s

Binary secret
120 16411 7 150 10 2.3h — — 1 2h
130 16411 5 150 15 6.6h — — 1 1h

140 16411 5 170 15 12h — — 1 16.3h
140 16411 5 170 15 12h — — 10 1.7h

Binary matrix SIS [9]
256 500009 − 400 4 4.5h 1 2minB — —
280 500009 − 440 4 6.5h 1 3minB — —

All our experiments confirm that Linear Length Pruning works much more
efficient than Lindner-Peikert Decoding for most of the considered variants of
LWE. Another observation is that lowering the number of samples significantly
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speeds up the reduction in practice and slows down the decoding step. Since the
latter can be parallelized, a proper choice of the number of samples leads to a
better trade-off between the reduction and enumeration.
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